Crutckshank, D. W. J. \& Sparks, R. A. (1960). Proc. Roy. Soc. A258, 270.
Daly, J. J., Stephens, F. S. \& Wheatley, P. J. (1963). M.R.S.A. Final Report No. 52.

Dewar, M. J. S. \& Schmeising, H. N. (1959). Tetrahedron 5, 166.
Ferguson, G. \& Sim, G. A. (1961). Acta Cryst. 14, 1262. Ferguson, G. \& Sim, G. A. (1962). J. Chem. Soc. p. 1768.
Hargreaves, R. \& Rizvi, S. H. (1962). Acta Cryst. 15, 365.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Phillips, D. C. (1954). Acta Cryst. 7, 746.
Sim, G. A., Robertson, J. M. \& Goodwin, T. H. (1955). Acta Cryst. 8, 157.
Sutherland, H. H. \& Hox, T. G. (1967a). To be published. Sutherland, H. H. \& Hox, T. G. (1967b). To be published. Wilson, A. J. C. (1942). Nature, Lond. 150, 151. Young, D. W., Tollin, P. \& Sutherland, H. H. (1967). Acta Cryst. B24, 161.

The Crystal Structure of $\boldsymbol{\beta}$-Protactinium Pentabromide

By D. Brown*, T.J.Petcher \dagger and A.J. Smith
Chemistry Department, The University, Sheffield S3 7HF, England

(Received 31 January 1968)

Abstract

Protactinium pentabromide crystallizes in two distinct modifications. A three-dimensional structure analysis of the β form (final $R=9.05 \%$) shows it to be essentially isostructural with uranium pentachloride. The molecular $\mathrm{Pa}_{2} \mathrm{Br}_{10}$ units are bis-octahedral with symmetric bromine bridging (in contrast to $\mathrm{U}_{2} \mathrm{Cl}_{10}$), and are formed by the protactinium atoms occupying one fifth of the octahedral holes of a close-packed bromine lattice. The monoclinic unit cell of β - PaBr_{5} has $a=8 \cdot 385, b=11 \cdot 205, c=8.950 \AA$ and $\beta=91 \cdot 1^{\circ}$. The structural relationship of $\beta-\mathrm{PaBr}_{5}$ with other pentahalides and with other protactinium compounds is discussed.

Introduction

Protactinium pentabromide, PaBr_{5}, has previously been reported (Maddock, 1961) on the basis of X-ray powder diffraction data, to possess orthorhombic symmetry with the lattice parameters $a=7 \cdot 25, b=12 \cdot 12$ $c=9 \cdot 13 \AA$. Recent work at A.E. R.E., Harwell (Brown 1966), again powder studies, indicated that PaBr_{5} was possibly dimorphic but the powder results were not satisfactorily interpreted. The present single-crystal investigation was undertaken in an attempt to clarify this situation and in order to provide structural data on protactinium pentabromide to permit a comparison with the information then available for niobium pentachloride and pentabromide (Zalkin \& Sands, 1958) and protactinium pentachloride (Dodge, Smith, Johnson \& Elson, 1967).

Experimental

Protactinium pentabromide was prepared as described previously (Brown \& Jones, 1966), and purified by vacuum sublimation at 400°. The compound is highly sensitive to atmospheric moisture, and single

[^0]crystals were obtained by slow sublimation of small quantities ($c a .10 \mu \mathrm{~g}$) of the product sealed in evacuated thin-walled silica capillaries. Investigation of the resulting crystals confirmed the existence of two forms of this compound. Sublimation at approximately $400-410^{\circ}$ resulted in the formation of $\beta-\mathrm{PaBr}_{5}$ whereas at approximately $390-400^{\circ}$ a low temperature modification, $\alpha-\mathrm{PaBr}_{5}$, was obtained. Capillaries invariably contained entirely one modification, not an equilibrium mixture, and complete transformation, e.g. $\alpha \rightarrow \beta$, could be achieved by varying the sublimation conditions. Although we have been able to obtain some preliminary results for $\alpha-\mathrm{PaBr}_{5}$ this modification is more difficult to crystallize than $\beta-\mathrm{PaBr}_{5}$ and crystals suitable for a full structure determination have not yet been prepared. Preliminary investigations indicate that $\alpha-\mathrm{PaBr}_{5}$ possesses monoclinic symmetry with $a=12 \cdot 69$, $b=12.82, c=9.92 \AA ; \beta=108^{\circ}$, the space group being $P 2_{1} / c$.

The results of oscillation, Weissenberg and precession studies have shown that $\beta-\mathrm{PaBr}_{5}$ possesses monoclinic symmetry, space group $P 2_{1} / n$ with reflexions systematically absent for $h 0 l$ with $h+l=2 n+1$ and $0 k 0$ with $k=2 n+1$. The unit-cell parameters are $a=8.385, b=11 \cdot 205, c=8.950 \AA ; \beta=91 \cdot 1^{\circ}$ (all with an accuracy of $\pm 0.3 \%$); the calculated density for four PaBr_{5} molecules per unit cell is $4.98 \mathrm{~g} . \mathrm{cm}^{-3}$. The nonstandard setting of the space group, $P 2_{1} / n$, rather than the standard $P 2_{1} / c$, was chosen to bring out the
relationship with a close-packed arrangement of bromines and for consistency with the reported structure of uranium pentachloride.

Three-dimensional intensity data were collected, using a crystal approximately $0.1 \times 0.1 \times 0.1 \mathrm{~mm}$., by the precession and multi-film, equi-inclination Weissenberg techniques with zirconium-filtered molybdenum $K \alpha$ radiation $\lambda=0.7107 \AA$). The reciprocal lattice nets $0 k l$ to $5 k l$ (Weissenberg) and $h k 0$ (precession) were surveyed and a total of 281 unique reflexions measured. The intensities, estimated visually, were placed on the same absolute scale by the use of common reflexions. The appropriate Lorentz-polarization factors were applied and a correction for X-ray absorption was made by means of a 512 -point Gaussian integration following essentially the method of Busing \& Levy (1957) programmed for the Mercury computer (Program written by A.J.Smith). The mass absorption coefficient of protactinium for molybdenum $K \alpha$ radiation was taken to be $118 \mathrm{~cm}^{2} . \mathrm{g}^{-1}$ by a linear interpolation from the values published for thorium and uranium (Roof, 1959). The linear absorption coefficient for the crystal, μ, is thus $15 \cdot 6 \mathrm{~cm}^{-1}$.

Determination of the structure

The positions of four protactinium atoms per cell (one per asymmetric unit) were unambiguously derived from a three-dimensional Patterson synthesis; subsequent Fourier syntheses, based on protactinium phasing, clearly revealed an octahedral arrangement of bromine atoms about each protactinium atom. At this stage details of the crystal structure of uranium pentachloride, UCl_{5}, became available (Smith, Johnson \& Elson, 1967) and a comparison of the reported unit cell, space group and heavy atom position with those for $\beta-\mathrm{PaBr}_{5}$ suggested that the two compounds were isostructural. The published chlorine coordinates were therefore inserted for the bromine positions in $\beta-\mathrm{PaBr}_{5}$ and least-squares refinement, initially by the blockdiagonal approximation (using the program of J.S.

Rollett) and finally by full-matrix with individual anisotropic vibrational parameters, and allowance for anomalous scattering (using the program General SFLS by N.A. Bailey) reduced the R index to the final value of $9.05 \% . \Delta f^{\prime}$ and $\Delta f^{\prime \prime}$ values for protactinium, -15.75 and +13.65 electrons respectively, were obtained by interpolation from the thorium and uranium values measured by Roof (1961). The scattering factors ($f, \Delta f^{\prime}$ and $\Delta f^{\prime \prime}$) given in International Tables for X-ray Crystallography (1962) were used for bromine. The shifts obtained in the final refinement cycle were less than one quarter of the corresponding standard errors for all positional and vibrational parameters. The final parameters are listed in Table 1 together with their standard errors. Observed and calculated structure factors are quoted in Table 2.

Discussion of the structure

Each protactinium atom is coordinated octahedrally by six bromine atoms; two such octahedra share an edge to form a $\mathrm{Pa}_{2} \mathrm{Br}_{10}$ unit (Fig.1) which is situated about a crystallographic centre of inversion. This dimeric configuration is very similar to that found for UCl_{5} but, whereas the latter posesses a distinctly assymmetric chlorine bridge, bond lengths being $2 \cdot 67$ and $2 \cdot 70 \AA$ ($\sigma=0.01 \AA$), $\beta-\mathrm{PaBr}_{5}$ has symmetric bromine bridging, the bond lengths of 2.85 and $2 \cdot 86 \AA$ being identical within one standard deviation ($\sigma=0.013 \AA$). The protactinium atoms are displaced from the centres of the octahedra by approximately $0.2 \AA$ in directions away from each other along the line joining Pa and Pa^{\prime}. As a result of this the bridging bromine atoms $\operatorname{Br}(1)$ and $\operatorname{Br}\left(\mathrm{I}^{\prime}\right)$ approach more closely than they would for regular octahedral coordination and the bond angles within the distorted octahedra deviate considerably from 90°. In particular the $\operatorname{Br}(1)-\operatorname{Pa}-\operatorname{Br}\left(1^{\prime}\right)$ angle is compressed to $81 \cdot 1^{\circ}$. The $\mathrm{Pa}-\mathrm{Br}$ bond lengths to nonbridging bromines range from $2 \cdot 54$ to $2 \cdot 59 \AA$. Bond lengths are shown in Fig. 1 and angles are listed in Table 3, together with their standard deviations. Intra-

Table 1. Atomic parameters in $\beta-\mathrm{PaBr}_{5}$
(Space group $P 2_{1} / n$, all atoms in general positions, e.s.d.'s in parentheses)
Positional parameters

	$10^{4} x / a$
Pa	$-525(9)$
$\operatorname{Br}(1)$	$298(35)$
$\operatorname{Br}(2)$	$-1356(41)$
$\operatorname{Br}(3)$	$2494(42)$
$\operatorname{Br}(4)$	$-3378(41)$
$\operatorname{Br}(5)$	$-448(41)$

$10^{4} y / b$	$10^{4} z / c$
$1377(6)$	$1624(8)$
$1157(17)$	$-1452(33)$
$1285(36)$	$4384(22)$
$1233(44)$	$2312(35)$
$1210(38)$	$639(25)$
$3671(23)$	$1393(33)$

Vibrational parameters $\left(\times 10^{4}\right)$

	b_{11}	b_{22}	b_{33}	b_{23}	b_{31}	b_{12}
Pa	$121(12)$	$69(5)$	$95(8)$	$42(26)$	$-23(14)$	$-34(32)$
$\operatorname{Br}(1)$	$207(50)$	$89(21)$	$127(34)$	$11(57)$	$-52(65)$	$109(74)$
$\operatorname{Br}(2)$	$279(54)$	$172(33)$	$90(38)$	$32(66)$	$100(62)$	$372(99)$
$\operatorname{Br}(3)$	$222(42)$	$125(28)$	$204(53)$	$27(74)$	$29(77)$	$1(77)$
$\operatorname{Br}(4)$	$264(52)$	$183(39)$	$120(40)$	$-81(68)$	$50(66)$	$-294(95)$
$\operatorname{Br}(5)$	$252(43)$	$89(17)$	$197(45)$	$35(78)$	$60(64)$	$152(100)$

Table 2. $\left|F_{\text {obs }}\right|$ and $\left|F_{\text {calc }}\right|$ for $\beta-\mathrm{PaBr}_{5}$
Lines marked by black dots give l and k in that order. The remaining lines give, from left to right, $h,\left|F_{o}\right|,\left|F_{c}\right|$.

			- 2	9		- 3	7		- 5	8	
- 0	\bigcirc		-3	5536	4020	0	3259	582)	-5	5257	5252
2	10120	11416	-1	4814	5992	2	$44^{6}{ }^{\circ}$	3634	-3	2018	8975
4	4409	5004	1	4146	4347	- 3	8			2128	2353
	1223	1505	- 2	-		-3	; 259	4180	- 5	9	
3	2128	2 K 20	-2	6541	7490	-1	11742	11349	-	4556	3977
10	4245	3113	4	7285	6953	1	3458	4142	- 5	\bigcirc	
- 0	${ }^{8}$		- 2	1		- 3	3		4	$4{ }^{1} 14$	4916
1	12824	9036	-5	4055	4696	-3	4055	$3^{8} 18$	2	14259	16083
2	$\bigcirc 607$	7244	-3	0470	5124	- 3	12		-	4055	43^{80}
3	$553{ }^{\circ}$	5481	-1	5168	5071	${ }^{1}$	4056	3537	2	4891	4830
6	20048	7122 3668	3	4146	2995	$\bullet{ }^{-4}$	-		- 6	1	
6	3709	3668	4	5330	3769	-4	2734	2762	-4	3952	4428
$\cdot{ }_{0}^{7}$	1498 2	1307	5	3117	3155	2	11140 24909	10022 25440	-3	2868 5114	2644 5861
	0470	4804	-5^{2}	4409	4972	4	7024	6928	1	3658	3663
3	10.412	:0344	-1	5735	5593	- 4	1		2	3609	3663 4446
5	5536	4027	1	: 0062	12913	-5	25.34	2031	- 6	$4{ }^{4}$	
7	2Es 8	a)60	2	3		-4	3857	4103 6850	-5	6412	6566
- 20	${ }_{20412}^{3}$	9659	-5	4967	4723	-2	15608 6917	6850 7336	-3	5670	5526
1	20412 4735	3492	-3	5863	6439 5367	1	3962	4303 83	${ }^{5}{ }^{5}$	3867 3	4395
3	5259	4936	-	S 353	5632	5	9733	8329 3553	- 4°		
4	5330	4845	2	2868	2781	5	4736	3553	-4	2995 3349	3050
7	2288	2504	- 2	4		- 4	${ }_{129}{ }^{2}$	12168	- -1	3349 3644	2773 5802
- 0	4		-4	20203	18483	-1	12998 5115	12168 5364	-	4145	4442
-	$33^{87} 7$	33420	-	6052	6220	5	5115 3117	5364 3250	2	3349	4842 2802
2	9511	9089	-	5399	4789	5	3117	3250	- 6	3348	2802
5	2594	2029	1	4236	3329	$\cdots{ }^{4}$	$3{ }^{3}$			5188	4175
10	2995	2812	4	5864	5525	-5	2734	3372	-4	11108	4176 12541
- 0	5		2	5	55	-3	4891 3458	4489 3075	-2	11185 3769	12542 3952
1	5990	5043	-5	3117	3158	-2	3458 4656	3077 3856		3769	3952 383
2	6174	6848	-3	3458	3682	0	4656 4409	3856 487	- 6	36	3633
4	8515	8323	-2	3349	3694	1	4499 8338	4871 8225	-5	4650	4361
- 0	3658 6	3909	-	9109 7587	9041	5	3349	4321	-3	3769	3276
-	4575	3630	4	7587		- 4	4			7	
2	3668	4058	5	1933	1820	-4	2118	2102	- ${ }^{1} 6$	3235	3310
3	5670	5073	- ${ }^{2}$	${ }^{2} 6$		-3	2594	2268	- ${ }_{0}^{6}$	2118	
	7		-5	3235	3215	-	8064	7922	- 7	2118	2593
2	5468	5758	3	5330	4899	2	18012	19495	$0_{-1}{ }^{7}$	- 4967	
3	4055	2612	- 2	7			$\stackrel{5}{857}$		-	4967 13366	5801 13110
	8		-5	3565	3447	4	6753	6997	- 7	1	
\bigcirc	13055	14053	-3	4891	4608	-	2594	2509	-3	3759	3480
2	4493	4926	-1	2995	3549	3	2594 4409	2509 4808	-1	4409	4823
3	3857	3643	- 2	8		3	4409	4808	-	2445	2442
- 0	9		-4	10120	9368	- ${ }^{4}$			1	1498	1529
2	4055	3934	- 2	2995	3554	-1	5971 3117	6644	2	4967	5634
4	5399	4882	-1	2288	1743	- 4	3117	2774	- 7	2	56
-0	10		0	2975	2752	-5	2868		-4	1729	1865
	4236	2867	1	+575	${ }^{6} 648$	-5	3117	3234	- 2	7636	7903
\bigcirc	5468	4168	0^{2}	${ }_{51}^{9} 88$		1	3235	3555	\bigcirc	4409	4957
	\bigcirc		2	6412	5483 $5: 67$	3	5399	5159	$\cdots 7$	3	
3	29953	32442	- 2	10		- ${ }^{4}$			-1	3349 3458	3487 2887
	1		1	2594	1792	-3	2388	2466			2687 5597
-4	3458	2860	3	\bigcirc		-1		3231 4301 364	- 7	4.	5597
${ }^{-4}$	7488	7986	-3	8603	9051	1	4055 3458	4301 3674	-1	4323	4756
- ${ }^{2}$	2		-1	36682	34622	- 4	3458 7	3674	1	10589	10448
-4	4409	4678	1	10902	3775	- 0^{4}	4236	4206	- 7	5	
-2	12227 3057	12652	3	7488	0.440	- 5	4236	4206	-1	4409	4635
- ${ }^{4}$	3057 3	4002	- 5^{3}	${ }^{1} 468$		-5^{5}	11980	11308	- 7	ó	
-4	4323	4023	-3	6808	7281	-3	3668	3239	- ${ }^{\circ} 8$	2995	2911
-3	3117	3558	-2	5186	5725	-1	3962	4088			6622
-1	4323	5150	\bigcirc	8545	9604	3	6412 1448	+6457	- 8	1	
0	4409	4473	1	3668	3412	5	11438	11293	2	3962	3422
1	3963	2960	2	5800	5377	- ${ }^{5}$			- 8	2	
4	6971	7850	3	; 109	8294	-4	4146	3770 3160	1	5735	5985
5	2868	2938	5	3235	3507	- ${ }^{-1}$	3187 518	3160 5174 31	- 8	${ }^{4}$	
- ${ }^{2}$	4		$\bullet 3$	2		-1	5125 3127	5174 3156		5864	5664
-5	3759	3796	4	7058	10153	1	3117 +145 4575	3156 4314	- 0	6	
-3	2868	2363	${ }^{2}$	7130	6) 89	3	1145 4575	4314 4537	${ }^{1}$	3962	3726
-	2868	2208	2	5536	4859	${ }^{3}{ }^{3}$	${ }_{2} 4575$	4537	- 9	\bigcirc	
1	7877	8978	- 3	3		- ${ }^{5}$	4 9 989	8596	-3	5800	5577
3	21178	24375	-5	3349	3309	.$^{2} 5$	959	859	- 9	4	
- ${ }^{1}$	5		-3	4140	4242	-4	$45^{3} 75$		-3	4656	4579
-3	6114	6979	-2	¢ 235	5056	-4	4575 3759	3845 4273	- 10	\bigcirc	
-1	EG 46	14019	-	$8 \mathrm{PO}^{2}$	9477	-2	3759 3067	4173 4247	\bigcirc	4891	4963
0	4575	3812	2	5468	5720	3	2118	2692	-10	4.6	
1	6235	7049	3	3762	4701	- ${ }_{5}$			-	4736	4083
2	3962	3553	- 3	4		-5^{5}	8589	9304			
4	3686	4600	-3	7535	727°	-3	3117	2965			
- ${ }^{1}$	6		-1	$2559{ }^{\circ}$	25286	-1	2734	3404			
-2	5041	5258	1	6541	7217	-	1729	1904			
0	4575	6229	3	4235	4959	3	4967	5374			
${ }^{1}$	2734	2312	- ${ }^{3}$	5		4	4967	3489			
	7		-5	5470	6119	5	10375	9535			
0	1933	2376	-3	6294	6539	- 5	5				
4	4323	4813	\bigcirc	4891	5297	-1	4891	4877			
- ${ }^{4}$	4735	5051	1	4656 3568	3025	1	5259	5455			
-2	2995	3667	3	3568 6114	2509	3	5188	4566			
,	2995	3190	${ }_{3}$	6	7498	- 5					
1	4493	4752	-4	7182	5180	- ${ }^{5}$	5330	2127			
3	11240	14589	1	3555	37 ¢ ${ }^{\text {c }}$	0^{5}	${ }_{2} 668$	3046			

molecular $\mathrm{Br} \cdots \mathrm{Br}$ contacts range from 3.63 to $3.95 \AA$. A few of these, including $\operatorname{Br}(1) \cdots \operatorname{Br}\left(1^{\prime}\right), 3 \cdot 71 \AA$, are significantly shorter than expected van der Waals distances ($3.90 \AA$; Pauling, 1960). A projection of the structure down the c axis is illustrated in Fig. 2.

The crystal structure as a whole, like that of UCl_{5}, is based on a cubic closest packing of the halogen atoms, with the protactinium aloms occupying one fifth of the octahedral holes in adjacent pairs. This arrangement has previously been illustrated for UCl_{5} (Smith, Johnson \& Elson, 1967) and will not be repeated here. As these authors point out, an idealized structure of this type requires a repeat distance along the b axis of $4 / 2 . r$ ($r=$ packing radius of bromine) with a - and c-axis repeat distances both equal to $2 \gamma 5$. r. Numerical values obtained for $r=1.95 \AA$ (Pauling, 1960) are $a=c=8.72 \AA, b=11.03 \AA$, compared with the experimental values of $a=8 \cdot 39, c=8.95$, and $b=11 \cdot 20 \AA$. The protactinium atoms obviously distort the packing in the $a c$ plane and the observed β angle, $91 \cdot 1^{\circ}$, deviates slightly from 90°.

Fig. 1. The dimeric $\mathrm{Pa}_{2} \mathrm{Br}_{10}$ unit.

Fig.2. A projection of the $\beta-\mathrm{PaBr}_{5}$ structure along the c axis.

Table 3. Bond lengths and angles for $\beta-\mathrm{PaBr}_{5}$

Bond lengths (e.s.ds in parentheses)	
$\mathrm{Pa}(1) \ldots \mathrm{Pa}\left(1^{\prime}\right)$	$4.341(0.018 \AA \AA$
$\mathrm{Pa}(1) \ldots \operatorname{Br}(1)$	$2.862(0.013)$
$\mathrm{Pa}(1) \ldots \mathrm{Br}\left(1^{\prime}\right)$	$2.849(0.013)$
$\mathrm{Pa}(1) \ldots \operatorname{Br}(2)$	$2.581(0.016)$
$\mathrm{Pa}(1) \ldots \operatorname{Br}(3)$	$2.598(0.018)$
$\mathrm{Pa}(1) \ldots \operatorname{Br}(4)$	$2.541(0.018)$
$\mathrm{Pa}(1) \ldots \operatorname{Br}(5)$	$2.580(0.018)$

Angles (all e.s.ds. $\left.0 \cdot 5^{\circ}\right)$	
$\mathrm{Br}(1)-\mathrm{Pa}(1)-\mathrm{Br}\left(1^{\prime}\right)$	$81 \cdot 1^{\circ}$
$\mathrm{Br}(1)-\mathrm{Pa}(1)-\mathrm{Br}(3)$	$88 \cdot 3$
$\mathrm{Br}(1)-\mathrm{Pa}(1)-\mathrm{Br}(4)$	$84 \cdot 4$
$\mathrm{Br}(1)-\mathrm{Pa}(1)-\mathrm{Br}(5)$	$90 \cdot 1$
$\mathrm{Br}\left(1^{\prime}\right)-\mathrm{Pa}(1)-\mathrm{Br}(2)$	$91 \cdot 8$
$\mathrm{Br}\left(1^{\prime}\right)-\mathrm{Pa}(1)-\mathrm{Br}(3)$	$83 \cdot 4$
$\mathrm{Br}\left(1^{\prime}\right)-\mathrm{Pa}(1)-\mathrm{Br}(4)$	$88 \cdot 4$
$\mathrm{Br}(2)-\mathrm{Pa}(1)-\mathrm{Br}(3)$	$92 \cdot 9$
$\mathrm{Br}(2)-\mathrm{Pa}(1)-\mathrm{Br}(4)$	$93 \cdot 4$
$\mathrm{Br}(2)-\mathrm{Pa}(1)-\mathrm{Br}(5)$	$97 \cdot 1$
$\mathrm{Br}(3)-\mathrm{Pa}(1)-\mathrm{Br}(5)$	$93 \cdot 2$
$\mathrm{Br}(4)-\mathrm{Pa}(1)-\mathrm{Br}(5)$	$94 \cdot 0$
$\mathrm{~Pa}(1)-\mathrm{Br}(1)-\mathrm{Pa}\left(1^{\prime}\right)$	$98 \cdot 9$
$\mathrm{Br}(1)-\mathrm{Pa}(1)-\mathrm{Br}(2)$	$172 \cdot 6$
$\mathrm{Br}\left(1^{\prime}\right)-\mathrm{Pa}(1)-\mathrm{Br}(5)$	$170 \cdot 6$
$\mathrm{Br}(3)-\mathrm{Pa}(1)-\mathrm{Br}(4)$	$169 \cdot 8$

The arrangement found for $\beta-\mathrm{PaBr}_{5}$ and for UCl_{5} differs from that observed for similar dimeric units of $\mathrm{NbCl}_{5}, \mathrm{TaCl}_{5}$ (Zalkin \& Sands, 1958), and MoCl_{5} (Sands \& Zalkin, 1959) in which hexagonal closest packing of the chlorine atoms is reported with the metal atoms again occupying one fifth of the available octahedral holes. Protactinium pentachloride, PaCl_{5}, possesses a totally different structure (Dodge, Smith, Johnson \& Elson, 1967) in which infinite chains of pentagonal bipyramids share edges, each protactinium atom being seven-coordinate. It will be interesting to see whether $\alpha-\mathrm{PaBr}_{5}$ follows the d-transition metal pentachlorides and shows hexagonal closest packing of the bromine atoms and also to search for both a possible low temperature form of PaCl_{5}, since the crystals used were grown by sublimation, and high temperature form of UCl_{5} since the crystals of this compound were obtained from carbon tetrachloride solution.

The single-bond covalent radius of protactinium(V) derived from the six-coordinate $\beta-\mathrm{PaBr}_{5}$ structure is $1.44 \pm 0.02 \AA$, which can be compared with the mean single-bond values of $1.45 \pm 0.02 \AA$ and $1.52 \pm 0.02 \AA$ for the seven-coordinate pentachloride (Dodge, Smith, Johnson \& Elson, 1967) and nine-coordinate hepta-fluoro-complex, $\mathrm{K}_{2} \mathrm{PaF}_{7}$ (Brown, Kettle \& Smith, 1967) respectively. The single-bond covalent radius of uranium (V) derived from the six-coordinate UCI_{5} structure $1.44 \pm 0.01 \AA$, is very close to these first two values.

This work was carried out under a research contract for the United Kingdom Atomic Energy Authority, Atomic Energy Research Establishment, Harwell and one of us (T.J.P.) thanks the Authority for financial assistance.

References

Brown, D. (1966). Unpublished observations.
Brown, D. \& Jones, P J. (1966). J. Chem. Soc. (A), p. 262.
Brown, D., Kettle, S. F. A. \& Smith, A. J. (1967). J. Chem. Soc. (A), p. 1429.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180.
Dodge, R. P., Smith, G. S., Johnson, Q. \& Elson, R. E. (1967). Acta Cryst. 22, 85.

International Tables for X-ray Crystallography (1962). Vol. III, Birmingham: Kynoch Press.

Maddock, A. G. (1961). Unpublished observations, cited in Brown, D. \& Maddock, A. G. (1963). Quart. Rev. Chem. Soc. Lond. 17, 332.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Roof, R. B., JR (1959). Phys. Rev. 113, 820.
Roof, R. B., Jr (1961). Acta Cryst. 14, 934.
Sands, D. E. \& Zalkin, A. (1959). Acta Cryst. 12, 723.
Smith, G. S., Johnson, Q. \& Elson, R. E. (1967). Acta Cryst. 22, 300.
Zalkin, A. \& Sands, D. E. (1958). Acta Cryst. 11, 615.

Acta Cryst. (1969). B25, 182

The Crystal Structure of N -Methyl-4-phenylisoxazolin-5-one

By C.Sabelli
Istituto di Mineralogia dell'Università di Firenze, Firenze, Italy
and P.F.ZANAZZI
Istituto di Mineralogia dell' Università di Perugia, Perugia, Italy

(Received 6 February 1968)
Crystals of N-methyl-4-phenylisoxazolin-5-one, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}$, are monoclinic, $P 2_{1} / c$, with $a=13 \cdot 716$, $b=10.925, c=11.333 \AA, \beta=91.51^{\circ}$ and $Z=8$. X-ray analysis was based on layers $0-8$ about the b axis. The structure was determined by trial-and-error methods and refined by an anisotropic least-squares analysis of 870 observed reflexions. The final R index including the contribution of hydrogen atoms was 0.053 . The two independent molecules are arranged in the asymmetric unit according to a nearly orthorhombic symmetry. Bond distances and angles agree with accepted values. The phenyl and isoxazolinone rings of the two molecules are slightly tilted: the angles are 14° and 11°.

Introduction

Researches carried out (De Sarlo, Fabbrini \& Renzi, 1966) on the series of aryl derivatives of 2-methylisox-azolin-5-one with the formula:

have established some differences in physical properties between the compounds with $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{R}^{\prime}=\mathrm{H}$, $\mathrm{CH}_{3}, \mathrm{Br}$ and those with $\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}$ and $\mathrm{R}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{5}$.
N-Methyl-4-arylisoxazolin-5-ones have higher melting points and lower solubilities in ether than the isomeric 3-aryl derivatives. Moreover, the $\nu_{\mathrm{C}=\mathrm{O}}$ in the infrared spectra is located before $1706 \mathrm{~cm}^{-1}$ for 4 -aryl compounds and after $1730 \mathrm{~cm}^{-1}$ for all other N -methyl-isoxazolin-5-ones. It must be noted, however, that these differences are observed only in the solid phase, whereas comparable values are found in solution: e.g. the infrared spectra in carbon tetrachloride and the dipole moments in benzene solution. Analysis of the crystal structure of one compound for each of the two groups could account for these differences. In the
present paper the crystal structure of N-methyl-4-phenylisoxazolin-5-one is described. In the following paper (Sabelli \& Zanazzi, 1969) the crystal structure of N-methyl-3-phenyl-4-bromoisoxazolin-5-one is reported and the relations between the two types of compound are discussed.

Experimental

A sample of N-methyl-4-phenylisoxazolin-5-one was kindly supplied by Dr De Sarlo of the Istituto di Chimica Organica of the Florence University. Well formed, colourless crystals were obtained by recrystallization from an alcoholic solution.

Fig. 1. Relationship between the axes in the twinned reciprocal lattices.

[^0]: * Present address:Chemistry Division, Building 220, A.E. R.E., Harwell, Didcot, Berks., England.
 \dagger Present address: Chemistry Department, University College, London, England.

